(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
append
(6) Obligation:
Innermost TRS:
Rules:
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
append
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append(
gen_Cons:Nil3_0(
n5_0),
gen_Cons:Nil3_0(
b)) →
gen_Cons:Nil3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
append(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) →RΩ(1)
gen_Cons:Nil3_0(b)
Induction Step:
append(gen_Cons:Nil3_0(+(n5_0, 1)), gen_Cons:Nil3_0(b)) →RΩ(1)
Cons(hole_a2_0, append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b))) →IH
Cons(hole_a2_0, gen_Cons:Nil3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
append(
Cons(
x,
xs),
ys) →
Cons(
x,
append(
xs,
ys))
append(
Nil,
ys) →
ysgoal(
x,
y) →
append(
x,
y)
Types:
append :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) → gen_Cons:Nil3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(14) BOUNDS(n^1, INF)